

Méthodes topologiques en analyse non linéaire:développements récents -Conférence à la mémoire du Professeur Andrzej Granas 4 - 8 juillet 2022

Topological Methods in Nonlinear Analysis: Recent Advances - Conference in memory of Professor Andrzej Granas July 4 - 8, 2022

Vladimir Nazaikinskii

(Ishlinsky Institute for Problems in Mechanics RAS and Moscow Institute of Physics and Technology)

Symplectic reduction for differential equations degenerating on the boundary

We study the geometry underlying semiclassical asymptotic solutions for a class of (pseudo)differential equations degenerating on the boundary \$\partial X\$ of a smooth compact manifold \$X\$. We represent \$X\$ as the quotient of a closed smooth manifold \$M\$ by a semi-free circle action \$\tau\$, \$\partial X\$ being an isomorphic projection of the fixed-point set of \$\tau\$, and define the phase space \$\Phi\$ as the symplectic reduction of \$T^*M\$ with respect to the circle action \$\hat\tau\$ induced by \$\tau\$. Although the manifold \$\Phi\$ (equipped with the natural projection onto \$X\$) is isomorphic to \$T^*X\$ over the interior of \$X\$, it fails to be so in a neighborhood of the boundary (where it is even not a locally trivial bundle). This prevents one from using the standard Maslov canonical operator for constructing asymptotic solutions \$u\$ associated with Lagrangian submanifolds \$\Lambda\subset\Phi\$. However, \$\Lambda\$ can be viewed as the quotient of a \$\hat\tau\$-invariant Lagrangian manifold \$L\subset T^*M\$ and \$u\$ as a \$\tau\$-equivariant asymptotic solution of an appropriate lift of the original equation to \$M\$. Accordingly, \$u\$ can be written via Maslov's canonical operator on \$L\$, and it remains to represent the resulting expression via \$\Phi\$, \$\Lambda\$, and other objects related to \$X\$ alone.