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We study the geometry underlying semiclassical asymptotic solutions for a class 
of (pseudo)differential equations degenerating on the boundary $\partial X$ of a 
smooth compact manifold $X$.  We represent $X$ as the quotient of a closed 
smooth manifold $M$ by a semi-free circle action $\tau$, $\partial X$ being an 
isomorphic projection of the fixed-point set of $\tau$, and define the phase 
space $\Phi$ as the symplectic reduction of $T^*M$ with respect to the circle 
action $\hat\tau$ induced by $\tau$. Although the manifold $\Phi$ (equipped with 
the natural projection onto $X$) is isomorphic to $T^*X$ over the interior of $X$, 
it fails to be so in a neighborhood of the boundary (where it is even not a locally 
trivial bundle). This prevents one from using the standard Maslov canonical 
operator for constructing asymptotic solutions $u$ associated with Lagrangian 
submanifolds $\Lambda\subset\Phi$. However, $\Lambda$ can be viewed as 
the quotient of a $\hat\tau$-invariant Lagrangian manifold $L\subset T^*M$ and 
$u$ as a $\tau$-equivariant asymptotic solution of an appropriate lift of the 
original equation to $M$. Accordingly, $u$ can be written via Maslov’s canonical 
operator on $L$, and it remains to represent the resulting expression via $\Phi$, 
$\Lambda$, and other objects related to $X$ alone. 


